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Abstract 

This paper describes a preference-
ballot voting procedure that satisfies 
proportionality conditions consistent 
with allocation rules for divisor-method 
party-list elections such as d’Hondt, 
Sainte-Laguë, or Huntington-Hill.  The 
procedure generalizes Douglas R. 
Woodall’s Quota Preferential by Quo-
tient procedure, which proportionally as-
signs candidates to seats in accordance 
with the d’Hondt divisor method.  Varia-
tions of the procedure consistent with 
party-list elections but violating the later-
no-harm/help criterion are also pre-
sented. 

Keywords: Divisor method, Propor-
tional representation, Preference ballot 

1  Introduction 

Proportional representation in multi-candidate 
elections is achieved through two different 
mechanisms in common use today: party-list 
elections and single transferable vote (STV) 
preference-ballot elections.  This paper de-
scribes a preference-ballot voting procedure 
that is similar to STV but with a proportionality 
condition satisfied by divisor-method party-list 
elections instead of the proportionality condi-
tion satisfied by STV elections.   

The procedure described in this paper can be 
used in national party-list elections, such as 
those in Scandinavian countries, to determine 
the number of seats that each party is awarded 
to national parliaments.  The procedure allows 
voters to rank parties instead of just voting for 
one, while retaining the divisor methods that 

the countries are currently using.  The proce-
dure can also be used wherever STV elections 
can be used.   

Party-list proportional representation elec-
tions are used in many countries for multi-seat 
elections to parliaments.  In party list elections, 
the electorate votes for parties not candidates.1 
Seats are awarded to each party in proportion to 
its vote total, and candidates are elected on the 
basis of their rankings on party lists that are 
published  before the election.   

Perfect proportionality between awarded 
seats and votes is unachievable.  There are two 
common classes of methods for assigning seats 
in party-list elections in an approximately pro-
portional way [1, 5, 11].  They are the divisor 
method (with d’Hondt [2, 3, 10] rounding, or 
Sainte-Laguë [14] rounding, or Huntington-Hill 
[8, 9] rounding, etc.) and the largest remainder 
method (with the Hare [7] quota, or the Droop 
[4] quota, etc.).  Both classes of methods are 
described in Section 2 of this paper. 

In STV [6, 7] elections, which are also used 
for multi-seat elections to parliaments, voters 
construct their own ranked list of preferred 
candidates instead of choosing amongst ready-
made party lists.  STV uses a quota (Hare, 
Droop, etc.) to assign seats in an approximately 
proportional way, and it satisfies a quota-based 
proportionality condition.   

In the October 2003 issue of Voting matters, 
Douglas R. Woodall [18] introduced a preferen-
tial voting procedure based upon the divisor 
method with d’Hondt rounding.  The procedure 
is based on an idea of Olli Salmi [15, 16] to add 
an elimination procedure to the d’Hondt-
––––––––––––––––– 
1 In “open” elections of this type, voters are 
able to vote for one or more candidates as well, 
which can reorder the candidates on the party 
list. 
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Phragmén method proposed by Lars Edvard 
Phragmén in 1895 [12, 13].   

In this paper, Woodall’s procedure is gener-
alized, so that other rounding rules such as 
Sainte-Laguë or Huntington-Hill can be used to 
proportionally assign seats in preference-ballot 
elections.  The generalized procedure, like 
Woodall’s d’Hondt procedure and STV, satis-
fies the later-no-harm/help election criterion.  
Unlike STV, it satisfies a divisor-method pro-
portionality condition instead of a quota-based 
proportionality condition.   

In addition, Woodall’s single-round proce-
dure is modified so that ballot seat values can 
never decrease.   

If each voter is a party loyalist and ranks all 
of the candidates from their party on their pref-
erence ballot in party order, and ranks no other 
candidates on their ballot, the procedure will 
not in general elect the same number of candi-
dates from each party as the equivalent divisor-
method party-list election.  (The procedure does 
still satisfy the divisor-method proportionality 
condition, which is a less restrictive condition 
than perfect agreement with party list elec-
tions.) Alternative procedures are presented that 
agree with party list elections when voters vote 
only party lists, but at the expense of not satis-
fying the later-no-harm/help election criterion.   

Section 2 of this paper introduces largest re-
mainder and divisor methods for assigning 
seats in party list proportional representation 
elections.  Section 3 introduces the divisor 
method in priority form, the form needed for 
preference voting.  It also makes the case that 
Huntington-Hill divisor methods are the only 
divisor methods that are unbiased between 
large and small parties.  Section 2 and Section 3 
can be skipped by those already familiar with 
divisor methods.  In Section 4, the divisor 
method preference voting procedure satisfying 
later-no-harm/help is described and dem-
onstrated.  Section 5 demonstrates properties of 
the election procedure including the propor-
tionality condition.  Section 6 presents varia-
tions of the procedure to reproduce party list 
elections at the cost of not satisfying later-no-
harm/help.  Section 7 concludes the paper.   

2 Approximately Proportional    
Methods for Party List Elections 

This section introduces largest remainder and 
divisor methods for proportionally assigning 
seats in party list elections.  In party list elec-
tions, seats are awarded to parties in proportion 
to their vote totals.  The numbers of seats, Si, 
apportioned to parties are perfectly proportional 
to votes, Vi, if there is a single quota Q such 
that Si = Vi/Q for each party.  If votes for each 
party only came in multiples of the quota, then 
a party would be assigned one seat for each 
quota of votes.  For example, if 500 voters vote 
in a party list election for 5 seats and 200 voters 
choose the Red Party, 200 Voters choose the 
Green Party, and 100 voters choose the Blue 
party, dividing each total party vote by 100 
assigns 2 seats to the Red Party, 2 seats to the 
Green Party and 1 seat to the Blue Party. 

Since total party votes are generally not inte-
ger multiples of the desired quota and seats 
must be assigned in integer units, perfect pro-
portionally is generally unattainable and round-
ing is not guaranteed to produce the desired 
number of total seats.  For example, if 500 vot-
ers vote in a party list election for 5 seats and 
222 voters choose the Red Party, 149 voters 
choose the Green Party, and 129 voters choose 
the Blue Party, dividing each total party vote by 
100 assigns 2.22 seats to the Red Party, 1.49 
seats to the Green Party and 1.29 seats to the 
Blue Party for a total of five seats.  Conven-
tional rounding assigns 2 seats to the Red 
Party, 1 seat to the Green Party, and 1 seat to 
the Blue party for a total of only 4 seats. 

Approximate proportionality that assigns the 
desired total number of seats can be achieved 
through largest remainder or divisor methods.  
For the largest remainder method, a quota is 
fixed and the rounding rule is adjusted so that 
the desired number of candidates is elected.  In 
the above example, 5 seats are assigned if 
rounding up occurs not at 0.5 but at any number 
greater than 0.29 but less than or equal to 0.49.  
This adjusted rounding rule assigns 2 seats to 
the Red party, 2 seats to the Green party, and 1 
seat to the Blue Party, for a total of 5 seats.  
The largest remainder method is so-called be-
cause it is equivalent to rounding up the party 
seat assignments in decreasing order from the 
largest fractional remainder to the smallest, 
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until the desired number of seats is assigned.  
STV is a largest remainder method.2  

For divisor methods, a rounding rule is fixed 
and the quota is adjusted so that the desired 
number of candidates is elected.  In the above 
example, 5 seats are assigned for conventional 
rounding if party votes were divided not by 100 
but by any number greater than 88.8 but less 
than or equal to 99 ⅓.  For example, dividing 
party votes by 99 instead of 100 assigns 2.242 
seats to the Red Party, which rounds down to 2 
seats, 1.505 seats to the Green Party, which 
rounds up to 2 seats, and 1.303 seats to the Blue 
Party, which rounds down to 1 seat, for a total 
of 5 seats.  This paper presents a procedure for 
applying divisor methods to preference voting. 

In Section 3, the priority formulation of the 
divisor method, which is needed for preference 
voting, is introduced. 

3 Divisor Methods in Priority Form 

This section develops and demonstrates the 
priority formulation of divisor methods, which 
will be applied to preference-ballot voting in 
Section 4.  Also, several rounding rules in 
common use are described, and their bias for 
small or large parties is shown with an appor-
tionment slide rule.   

3.1 An Apportionment Slide Rule 

Imagine two sliding rulers, one on top of the 
other, with logarithmic scaling on each.3 Let the 
top ruler be the Votes Ruler and the bottom 
ruler be the Seats Ruler.  For a given position-
ing of the two rulers, the number of seats 
awarded to a party is the number of seats on the 
Seats Ruler directly below the number of votes 
on the Votes Ruler that a party received.  Each 
positioning of the Votes Ruler with respect to 
the Seats Ruler corresponds to a different per-
fect apportionment (before rounding) corre-
sponding to a particular quota.   

––––––––––––––––– 
2 For Meek’s method and for some other STV 
systems, the quota is recalculated when ballots 
become inactive. 
3 On a logarithmic scale the distance between 
two numbers is proportional to their ratio. 

Different rounding rules can be visualized in 
the following way.  For each integer N, a fixed-
rounding mark, log(FN–1, N) is placed between 
log(N – 1) and log(N) on the Seats Ruler.  For 
each log(N), the rounding mark log(FN–1, N) is to 
its left and the rounding mark log(FN, N + 1) is to 
its right.  The segment of the seats ruler be-
tween consecutive rounding marks log(FN–1, N) 
and log(FN, N + 1) is the integer seat region for N 
seats.  When the Votes Ruler is positioned over 
the Seats Ruler so that log(Vi) is over any part 
of the N seat region, the ith party is assigned N 
seats. 

3.2 Rounding Rules 

Two common rounding rules for party-list 
proportional representation elections are the 
Jefferson-d’Hondt rounding rule and the Modi-
fied Sainte-Laguë rounding rule.  Jefferson-
d’Hondt rounding is the same as rounding 
down.  The seat region boundary marks are at 
FN–1, N = N and the segment from log(N) to 
log(N+1) is the Jefferson-d’Hondt region for N 
seats.   

Modified Sainte-Laguë rounding is conven-
tional rounding, except for F0, 1.  The seat re-
gion boundary marks are at FN–1, N = N – 0.5 
and the segment from log(N – 0.5) to 
log(N + 0.5) is the Sainte-Laguë region for N 
seats.  Modified Sainte-Laguë, sets F0, 1 = 0.7, 
instead of the unmodified 0.5, making it harder 
for a small party to gain a seat.  We will see 
below that all values of F0, 1 ≤ F1, 2/2 = 0.75 are 
admissible for preference voting.  Because the 
Sainte-Laguë rounding marks are closer to the 
rightmost integer than the leftmost integer on a 
logarithmic scale, more seats will be rounded 
down than rounded up. 

On a logarithmic scale, the distance between 
consecutive integers decreases as the integers 
increase.  Because of this, when the number of 
seats apportioned to a party is rounded to an 
integer, the shift away from perfect proportion-
ality is greater for a party with a small number 
of votes than it is for a party with a large num-
ber of votes.  For this reason, a rounding rule 
that rounds down more than it rounds up (such 
as d’Hondt4 or SainteLaguë) is biased against 

––––––––––––––––– 
4 d’Hondt rounding’s bias in favor of large par-
ties is often counted as a point in its favor since 
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small parties compared to large parties and a 
rounding rule that rounds up more than it 
rounds down is biased in favour of small parties 
compared to large parties.   

The only rounding rule that isn’t systemati-
cally biased on a logarithmic scale is one with 
rounding marks placed exactly between the 
integers on such a scale.5 The Huntington-Hill 
rounding rule, which is used in the United 
States to apportion the seats of the House of 
Representatives to the states, is defined in this 
way.  The Huntington-Hill rounding mark be-
tween log(N – 1) and log(N) is half way be-
tween them:6 that is,  

log(FN–1, N) = ½ (log(N – 1) + log(N)), 
so  

FN–1, N = √(N(N – 1)), 

the geometric mean.  This assigns the integer 
region for N seats to the region of the slide rule 
closest to log(N).   

Without modification, Huntington-Hill 
awards a seat to any candidate getting just one 
first choice vote, since F0, 1 = 0.  An increased 
F0, 1 above zero makes Huntington-Hill viable 
for proportional representation elections.  We 
will see below that all values of F0, 1 ≤ F1, 2/2 = 
√½ are permissible for preference voting.  
Modified Huntington-Hill with F0, 1 = √½ 

agrees with Jefferson-d’Hondt when all parties 
receive 2 or fewer seats.  Since √½ is approxi-
mately 0.7, and √(N(N – 1)) is approximately 
N – 0.5 for large N, modified Huntington-Hill 
with F0, 1 = √½ is similar to modified Sainte-
Laguë.7  

                                                                              
it discourages party splits and encourages party 
mergers.  Only d’Hondt rounding guarantees 
that a majority of voters will be awarded a ma-
jority of seats.  In Sainte-Laguë and Hunting-
ton-Hill rounding, a majority could have its 
seats rounded down while a minority has its 
seats rounded up, resulting in a majority rule 
violation. 
5 Balinsky and Young argue that Huntington-
Hill is more biased than Sainte-Lague.  Howev-
er, they did not use a logarithmic scale in defin-
ing their bias criteria. 
6 This is why Huntington called his method 
“Equal Proportions.” 
7 The choice F0, 1 = √½ is also motivated by 
allowing inverse integer seat regions, 1/N, be-

3.3 Priority/Load Formalism 

If the Votes Ruler is positioned over the 
Seats Ruler such that log(V) votes on the Votes 
Ruler is positioned directly over log(S) seats on 
Seats Ruler then the quota is V/S and the frac-
tion of seats that each ballot accounts for is S/V.  
Due to the magic of logarithms, every log(V) 
and every log(S) that are positioned directly 
over each other on the two rulers have the same 
V/S ratio for a given positioning of the two rul-
ers.   

The slide rule can systematically assign seats 
to parties by placing the Votes Ruler to the left 
of the Seats Ruler and moving it to the right, 
which decreases the quota and increases the 
seat fraction per ballot.  Each time the vote 
mark for the ith party crosses a rounding mark, 
the ith party acquires an additional seat. 

When log(Vi) on the Votes Ruler is directly 
over log(FN–1, N) on the Seats Ruler, the ith party 
crosses from the N – 1 seat region to the N seat 
region and acquires its Nth seat.  The quota for 
when this occurs is Vi/FN–1, N.  This is the prior-
ity or quotient for the ith party to have N seats.  
The inverse priority, FN–1, N/Vi, which without 
rounding is the average number of seats per 
ballot, is the load [16] for the ith party to have N 
seats.8 One calculates priority quotients or loads 
for parties to acquire seats and assigns seats to 
the parties in order from highest priority to 
lowest, or lowest load to highest, stopping 
when the appropriate number of seats has been 
reached.  For party-list elections the priority 
formalism is commonly used.  Phragmén in-
voked the load formalism for his preference-
ballot procedure [12, 13, 16].  A priority tends 
to be a large number divided by a small number 
while a load tends to be a small number divided 
by a large number.  We will find that the load 
                                                                              
tween 0 and 1, which are the mirror images, on 
a logarithmic scale, of the integer seat regions 
between 1 and infinity.  For these additional 
regions, F1/(N + 1), 1/N =√((1/(N + 1))1/N), and in 
particular F1/2, 1 = √½ is the rounding mark be-
tween the ½ seat region and the 1 seat region.  
Since seats can only be assigned in integer 
units, parties that would receive fractional seats 
are excluded.  
8 Phragmén uses the term belastnig, which Olli 
Salmi translates as load, for what we call seat 
value [13]. 
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formalism is more natural for preference voting 
when presented in the abstract but that priorities 
have the advantage over loads, when concrete 
examples are presented, of being easier to cal-
culate and compare magnitudes by hand.   

For an example of the priority (load) formu-
lation, consider the party-list election for 5 
seats in which 222 voters choose the Red 
Party, 149 voters choose the Green Party, and 
129 voters choose the Blue Party. For simplic-
ity, Jefferson-d’Hondt rounding is used.  The 
five highest priorities (lowest loads) are the Red 
Party’s priority for one seat, 222/1=222 (1/222 
= 0.0045), the Green Party’s priority for one 
seat, 149/1=149 (1/149 = 0.0067) the Blue 
Party’s priority for one seat, 129/1=129 (1/129 
= 0.0078), the Red Party’s priority for two 
seats, 222/2 = 111 (2/222 = 0.009), and the 
Green Party’s priority for two seats, 129/2 = 
64.5 (2/129 = 0.016).  All other priorities are 
lower than these.  The Red Party is apportioned 
two seats, the Green Party is apportioned two 
seats, and the Blue Party is apportioned one 
seat.   

The priority/load formulation of fixed-
rounding is generalized to preference-ballot 
elections in Section 4. 

4 Proportional Preference-Ballot   
Voting by the Divisor Method  

This section develops a divisor method for 
electing candidates in preference-ballot elec-
tions.  The method is a generalization of the 
priority/load formalism for divisor method 
party-list elections described above, and of 
Woodall’s Quota Preferential by Quotient pro-
cedure for d’Hondt rounding.  The procedure 
described in this section satisfies the later-no-
harm/help criteria but is not guaranteed to agree 
with the results of a party-list election if each 
voter votes a party list.   

The single-round, d’Hondt version of the 
election procedure described in this section 
differs from Woodall’s single-round procedure 
slightly in that seat values are guaranteed never 
to decrease.  The multi-round, d’Hondt version 
of the election procedure is identical to 
Woodall’s multi-round procedure.   

The procedure can be visualized by imagin-
ing a Votes Ruler, as before, but now also many 
Seats Rulers, one for each ballot.  Since each 

ballot counts for one vote, the Votes Ruler has 
a mark at V = 1 and nowhere else.  The values 
of the seat regions on the Seats Rulers can be 
any number, not just integers, and their values 
and rounding marks can be different for each 
ballot and are determined as the election count 
proceeds.   

We begin with a series of definitions. 

Elected, hopeful, and excluded candidates 

Following Woodall, each candidate is in one 
of three states, designated as elected, hopeful 
and excluded.  At the start of the first stage, 
every candidate is hopeful.  As the count pro-
ceeds hopeful candidates are reclassified as 
elected or excluded.   

Active and inactive ballots 

Following Woodall, a ballot is active when it 
ranks at least one hopeful candidate.  It is inac-
tive when it ranks no hopeful candidate.   

The seat value of a ballot 

Following Woodall, each ballot is assigned a 
seat value that corresponds to the fractional 
number of candidates that the ballot can be said 
to have elected.  The seat value of ballots can-
not decrease (the exception is in the multi-
round version of the procedure, when the count 
is restarted and all seat values are reset to zero).  
The sum of seat values over all ballots is the 
current number of elected candidates.   

The candidate election load 

In the priority/load formalism for divisor-
method party-list elections, the Votes Ruler is 
shifted to the right and a new seat is acquired 
by the ith party each time the Vote mark for the 
ith party crosses the next rounding mark on the 
seat ruler.  We will perform the same procedure 
for preference voting, except that seat regions 
and rounding marks are not fixed beforehand.  
Instead, as we shift the Votes Ruler to the right, 
a trial rounding mark on each ballot’s Seat 
Ruler directly follows underneath the V = 1 
mark on the Votes ruler.  At any particular po-
sitioning of the Votes Ruler with respect to the 
Seat Rulers, the value of the trial rounding 
mark, f, and the ballot’s seat value s, determine 
the seat value of the trial seat region to its right 
according to the formula s′ = g(s, f), where 
g(s, f) is a function that depends on which divi-
sor method rounding rule is being used.  At 
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some point, as the Votes Ruler and trial round-
ing mark moves to the right, the sum of the trial 
seat values, s′, for all of the ballots with candi-
date c as the topmost hopeful candidate will 
equal the sum of the current seat values for 
those ballots + 1.  The value of the trial round-
ing mark at that point is fc, the load to elect 
candidate c.  The priority to elect candidate c is 
pc = 1/fc.  These definitions are consistent with 
the party-list definitions for the load and prior-
ity of a candidate to be elected.  The load to 
elect candidate c satisfies  

( )( ) 1, =−∑
cballots

c sfsg , 

where the sum is taken over all ballots with 
topmost active hopeful candidate c.  In the 
above and all subsequent ballot sums, the ballot 
index for each seat value has been suppressed.  
It is important to keep in mind that seat values 
are for ballots and can be different for each 
ballot in the sum, while a load is for a candidate 
(or a group of candidates, as we will see below) 
and is a constant in the ballot sum. 

4.1 Properties of g(s, f ) 

A ballot with seat value s has its seat value 
increased to s′ = g(s, f) when its topmost hope-
ful candidate is elected with load f.  The func-
tion g(s, f) must satisfy the following condi-
tions:  

a) g(s, f) ≥ f for f > s,  

b) g(K – 1, FK–1, K) = K,  

c) ag(s, f) = g(as, af),  

d) g(s, f) = s when s ≥ f,  

e) g(s, f) is monotonically decreasing in s for 
s ≤ f, that is g(s, f) does not increase when 
s increases with f held fixed, and  

f) g(s, f) is strictly increasing in f for f ≥ s 
and s held fixed.   

Condition a) guarantees that a ballot’s seat 
value cannot decrease.  Conditions b) and c) 
together guarantee that g((K – 1)/V, FK–1, K/V) = 
K/V for any V, which is required for consis-
tency with divisor method rounding rules.  
Condition d) allows ballot sums to include bal-
lots with seat values larger than the load.  Con-

dition e) is required to guarantee that electable 
candidates remain electable.  Condition f) guar-
antees that there is one and only one fc for each 
candidate c.  Condition f) is not an independent 
condition.  It is a consequence of condition a), 
condition c), and condition e) which together 
guarantee that ∂g/∂f ≥ 1 for f ≥ s.   

4.2 Rounding Rules  

All of the following rounding rules have g(s, 
f) functions that satisfy the above conditions.  
They are determined by inverting the rounding 
mark formulas f = f(s, s′).  For d’Hondt, g(s, f) 
= max(s, f).  For unmodified Sainte-Laguë g(s, 
f) = max(s, 2f – s).  For unmodified Huntington-
Hill g(s, f) = max(s, f 2/s).  Modified Hunting-
ton-Hill and modified Sainte-Laguë rounding 
have F0, 1 above their unmodified values.  Con-
dition c) guarantees that g(s, f) = f h(s/f) where 
h(x) is a function of one variable.  Applying 
condition b) we have h(0) = 1/F0, 1 and h(1/F1, 2) 
= 2/F1, 2.  There are many ways to extrapolate 
h(x) between these points that satisfy the round-
ing rule conditions.  A linear extrapolation 
leads to  

h(x) = 1/F0, 1 + (2 – F1, 2/F0, 1)x  

for x ≤ 1/F1, 2, with unmodified h(x) for x ≥ 
1/F1, 2.  Hence, for f ≥ F1, 2, 

( )
1,0

1,02,1
1,0

2),(
F

sFF
F

ffsg −−= , 

with unmodified g(s, f) for f ≤ F1, 2s.  Condition 
e) requires that F0, 1 ≤ F1, 2/2.  For modified 
Huntington-Hill, in which F0, 1 = F1, 2/2 = 
(√2)/2, g(s, f) = (√2)f for f ≥ (√2)s, and g(s, f) = 
max(s, f 

2/s) otherwise.  For modified Sainte-
Laguë with F0, 1 = F1, 2/2 = 0.75, g(s, f) = 4f/3 
for f ≥ 1.5s and g(s, f) = max(s, 2f – s) other-
wise.  For modified Sainte-Laguë with F0, 1 = 
0.7, g(s, f) = (10f – s)/7 for sf 5.1≥ and g(s, 
f) = max(s, 2f – s) otherwise. 

4.3 The Electability Load 

The fact that candidate c has the lowest elec-
tion load does not mean that candidate c should 
necessarily be elected.  It could be that all the 
voters who voted for candidates other than c 
command enough votes to fill all of the       
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remaining seats with candidates other than c, 
and at lower loads than the load to elect c, if 
only they had voted more strategically.  The 
lowest possible load to fill the remaining seats 
with non-c candidates, fnotc, satisfies  

( )( ) Rsfsg
snotcballot

notc =−∑ , , 

where the sum is over all active ballots in 
which c is not the topmost active hopeful can-
didate, and R is the remaining number of seats 
to be filled.9 Hopeful candidate c is electable 
when fc < fnotc   

It is not necessary to calculate fnotc to deter-
mine whether c is electable.  The electability 
load, felect, satisfying 

( )( ) 1, +=−∑ Rsfsg
active

elect , 

where the sum is over all active ballots, is al-
ways between fc and fnotc and therefore can be 
used as an alternative electability criteria for c.  
Hopeful candidate c is electable when fc < felect   

Proof: If felect were less than fc and fnotc then 
the sum on the LHS would be less than R + 1.  
If felect were greater than fc and fnotc then the sum 
on the LHS would be greater than R + 1.   

One consequence of this fact is that if fc is 
the lowest election load and fnotc ≤ fc so that c is 
not electable, then no hopeful candidate is 
electable.  The electability load serves a similar 
purpose to the quota in STV elections, of de-
termining whether a hopeful candidate is elect-
able.  In divisor methods, at any stage, the 
quota is the range of values with a maximum 
equal to the election priority of the electable 
candidate with lowest election priority and with 
a minimum that is just greater than the election 
priority for the unelectable candidate with 
highest election priority.  The electability prior-
ity Q = 1/felect always falls in this range, so it is 

––––––––––––––––– 
9 This distribution of non-c candidates is not 
necessarily attainable since it requires each 
voter to split their ballot into R equal pieces and 
vote for one of R non-c candidates on each 
piece, each split ballot counting for 1/R of a 
vote.  However, the attainability of the distribu-
tion is not as important as the fact that the elec-
tability criterion leads to the desired proportio-
nality condition, as will be proved below. 

a valid quota.  This is the generalization of the 
quota, Q, used in Woodall’s paper. 

4.4 Explicit Load Formulas 

The election loads and electability load are 
determined from implicit formulas of the form 

( )( ) 0, =−−∑ Msfsg
s

, 

differing only in which ballots are summed and 
the value of M.  Since g(s, f) is strictly increas-
ing in f for f > s, the election load and electabil-
ity load equations have unique solutions.  In-
verting load equations is complicated by the 
fact that g(s, f) is piecewise continuous, with 
different formulas when s is less than or greater 
than f and for modified rules, when s is less 
than or greater than f/F1, 2  An iterative method 
to find f in such equations is as follows.   

Step 1.  All ballots that are included in the 
sum are placed into groups in increasing seat 
value order: s1 < s2 < s3 etc.  The number of 
ballots in the kth group is Vk.   

Step 2.  Calculate the next iteration of f from 
one of the following formulas.  For the first 
iteration include all ballots in the following sum 
and for the previous value of f, choose infinity.  
For later iterations, include only those ballots 
with seat values less than the previous value of 
f.   

For unmodified rules and modified rules in 
which every seat value that is less than f is lar-
ger than f/F1, 2 use f = 

∑

∑
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m
m
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for d’Hondt (F0, 1 = 1) and unmodified Sainte-
Laguë (F0, 1 = 0.5), and f =  
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for unmodified Huntington-Hill. 
For modified rules in which every seat value 

that is less than f is larger than f/F1, 2 use f =  
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for modified Huntington-Hill and f = 
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for modified Sainte-Laguë.  In the above ex-
pressions, sp is the largest seat value that is less 
than the current value of f/F1, 2 and sr is the 
largest seat value less than the current value of 
f.   

Step 3.  Repeat Step 2 until an f has been 
found such that sp and sr are unchanged.  That 
value of f is the correct load.   

 In the following election procedure 
Woodall’s d’Hondt single-round procedure [18] 
is generalized to other divisor methods.   

4.5 Election Procedure 1 

The following is a single-round election pro-
cedure for N seats that satisfies both later-no-
harm/ help and a divisor-method proportional-
ity condition. 

Step 1.  At the start of the first stage every 
candidate is hopeful and the seat value of every 
ballot is zero.  The remaining number of seats 
to be filled, R, is set to N, the total number of 
seats to be filled. 

Step 2.  The election load fc for each hopeful 
candidate c that is the topmost hopeful candi-
date on at least one ballot is determined from 

( )( ) 1, =−∑
cballots

c sfsg , 

where the sum is taken over all ballots where c 
is the topmost hopeful candidate and the elect-
ability load is determined from 

( )( ) 1, +=−∑ Rsfsg
active

elect , 

 where the sum is taken over all active ballots.  
If at least one hopeful candidate is electable, 
that is, fc < felect, go to step 3a.  If no candidate 
is electable, go to step 3b.   

Step 3a.  The electable candidate with the 
lowest election load is elected.  (If the total 
number of elected candidates is N, the count 
can be ended since no more candidates will be 
elected). R is reduced by 1.  If candidate c is 
elected, the seat value for each ballot with seat 
value s that contributed to electing c is in-
creased to g(s, fc).  Proceed to Step 2.   

Step 3b.  Exclude the candidate with the 
largest election load amongst those that are the 
topmost hopeful candidate on at least one bal-
lot.  Also exclude all hopeful candidates that do 
not appear as the topmost hopeful candidate on 
any ballot.  (If the total number of elected plus 
hopeful candidates is N then all of the hopeful 
candidates can be elected and the count ended 
since they are all guaranteed to be elected.) 
Proceed to Step 2.   

The single-round procedure with d’Hondt 
rounding differs from Woodall’s single-round  
procedure in the calculation of loads/priorities, 
so that seat values cannot decrease.  This is 
demonstrated with Election 1 from Woodall’s 
paper.  Loads rather than priorities will be pre-
sented to be consistent with the formulism used 
throughout this paper.  However, all loads will 
be presented as the inverse of priorities for easy 
comparison with Woodall’s examples and the 
priority formalism.   

Election 1 (3 seats, d’Hondt) 

 16 AB 
 12 B  
 12 C  
 12 D  
 8 EB 

Stage 1: The election and electability loads 
are fA = 1/16, fB = 1/12, fC = 1/12, fD = 1/12, fE = 
1/8, and felect = 4/60 = 1/15.  The lowest election 
load is fA.  It is lower than felect.  Candidate A is 
elected.  Each of the seat values for the 16 bal-
lots ranking candidate A first is increased from 
zero to 1/16.  Stage 2: Candidate B’s election 
load is decreased to fB = 2/(12+16) = 1/14.  The 
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other loads are unchanged.  No candidate’s 
election load is lower than the electability load 
so candidate E, who has the highest election 
load, is excluded.  Candidate B’s election load 
is again decreased, this time to 1/20.  This is 
calculated by only including the ballots ranking 
B first (not 2/36= 1/18, as that incorrectly in-
cludes the 16 ballots with seat values of 1/16 
which do not contribute to B’s load since 1/16 
is greater than 1/18).  Candidate B is elected.  
Each of the seat values for the 20 ballots rank-
ing B first is increased from zero to 1/20.  Stage 
3: fC = 1/12, fD = 1/12, felect = 2/24 = 1/12.  Nei-
ther of the remaining candidates is electable.  
One must be excluded and the other is elected.   

In the next section, properties that Woodall 
proved for d’Hondt rounding are proved for the 
general case.  The section culminates in a divi-
sor method proportionality condition. 

5. Properties of the Election Procedure 

The goal of this section is to prove that the 
election procedure described in the previous 
section satisfies a divisor method proportional-
ity condition.  This is done through a serious of 
steps following the logic Woodall used to dem-
onstrate d’Hondt proportionality (which turns 
out to be the same as Droop proportionality).  
The first two proofs together combine to prove 
that an electable candidate remains electable.  
The next two proofs together combine to prove 
that all electable candidates will eventually be 
elected.  From there the proportionality condi-
tion is proved by considering the worst case 
scenario in which a candidate is electable.   

Election loads of hopeful candidates cannot 
increase 

Electing and excluding candidates other than 
hopeful candidate c can increase but can never 
decrease the number of ballots in which c is the 
topmost hopeful candidate.  More ballots means 
that more can contribute to 

( )( )∑ −
cballots

c sfsg , , 

which from properties a), d), and f) cannot in-
crease the fc required to bring the sum to one. 

The electability load cannot decrease  

Excluding candidates does not change the 
seat values of ballots.  It can cause some ballots 
to become inactive which can only increase 
felect.  When a candidate is elected, the sum of 
seat values of all ballots increases by one and 
the remaining number of seats, R, decreases by 
one.  Moving the seat value sum to the RHS in 
the defining equation for the electability load 
we have a new RHS that is unchanged after an 
election, provided no new ballots have become 
inactive:  

( ) ∑∑ ++=
activeactive

elect sRfsg 1, . 

When no ballots become inactive the elect-
ability load cannot decease after an election of 
candidate c with load fc < felect, since 
g(g(s, fc), felect) ≤ g(s, felect) and g(s, f) is mono-
tonically increasing in f.  The requirement 
g(g(s, fc), felect) ≤ g(s, felect) is true for the case 
g(s, fc) ≤ felect since g(s, fc) ≥ s and g(s, felect) is 
monotonically decreasing in s for s ≤ felect.  It is 
true for the case g(s, fc) ≥ felect since in that case 
g(g(s, fc), felect) = g(s, fc) ≤ g(s, felect) and g(s, f) 
is monotonically increasing in f.   

In addition to the above, at each stage some 
ballots can become inactive.  Fewer active bal-
lots means that fewer will contribute to 

( )( )∑ −
active

elect sfsg , , 

which, from properties a), d), and f), cannot 
decrease the felect needed to bring the sum to R + 
1.   

If c is electable, it will remain electable 

 Since a candidate’s election load can only 
decrease and felect can only increase, if c is 
electable at one stage it will remain electable at 
later stages.   

At any stage, at most R hopeful candidates 
are electable 

There is only a possibility of more than R 
electable candidates if there are more than R 
hopeful candidates.  If there are more that R 
hopeful candidates, let flarge be the R + 1th 
smallest load of the more than R hopeful candi-
dates.  Call the hopeful candidates with round-
ing marks less than or equal to flarge the smaller 
candidates.  It must be the case that 
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which makes flarge ≥ felect and therefore all can-
didates with election loads greater than or equal 
to flarge are unelectable, so at most R are elect-
able. 

If there are R remaining hopeful candidates 
then at least one is electable 

Let fsmallest be the smallest load of the R hope-
ful candidates.  It must be the case that 

( )( )

( ) ,1),(

,

Rsfsg

sfsg

hopefulshopefuls cballots
smallest

active
smallest

=≤−=

−

∑∑ ∑

∑
 

which makes fsmallest < felect, so the hopeful can-
didate with the smallest election load is elect-
able when there are R hopeful candidates re-
maining.  (This argument can also be used to 
show that if there are R+1 remaining hopeful 
candidates then at least one is electable or all 
hopeful candidates are tied with election loads 
equal to the electability load.) 

An electable candidate is guaranteed to be 
elected 

 Removing the premature stopping condition 
in parenthesis in Step 3a (that the procedure 
stops when N candidates are elected) can have 
no effect since after N candidates are elected, 
no additional candidates can be elected since 
none of the remaining hopeful candidates will 
be electable.  Likewise, removing the prema-
ture stopping condition in parenthesis in Step 
3b (that the procedure elects the remaining 
hopeful candidates and stops when the total 
number of elected plus hopeful candidates 
equals N) also can have no effect since after the 
total number of elected plus hopeful candidates 
equals N, the procedure will still elect all of the 
remaining hopeful candidates, since at least one 
will always be electable.  Since the premature 
stopping conditions can be removed without 
changing which candidates are elected, and 
without the premature stopping conditions the 
election procedure ends when all candidates are 
either elected or excluded, and electable candi-
dates cannot be excluded, an electable candi-
date is guaranteed to be elected.   

 Proportionality condition 

The conditions above insure that the count 
cannot end before all electable candidates are 
elected.  Therefore demonstrating that a candi-
date is electable is equivalent to proving that it 
will be elected.  From this we can prove the 
following proportionality condition. 

If there are N seats to be filled and VT total 
valid ballots and V ballots all rank the same L 
candidates higher than all other candidates then 
at least K ≤ L of those candidates will be 
elected if  

( ) KK

KK

T FFKN
F

V
V

,11,0

,1
~1

~

−

−

++−
>  , 

where KKKK FF ,1,1
~

−− =  for d’Hondt, unmodified 
Sainte-Laguë, and unmodified Huntington-Hill 
and 1,0,1 1~ FKF KK +−=− for modified Sainte-
Laguë for 0.75 ≥ F0, 1 ≥ 0.5 and modified Hunt-
ington-Hill for √½ ≥ F0, 1 ≥ 1/2. 

Proof: Consider the worst case scenario to 
elect K candidates, which is that the K candi-
dates appear only on the V ballots and not on 
any others.  Assume that K – 1 of the candi-
dates have already been elected.  The load to 
elect the Kth candidate is determined by 

Kfsg
vballots

=∑ ),( , 

where the sum is over the V ballots and the seat 
values satisfy  

∑ −=
vballots

Ks 1 . 

The maximum value of f is found by minimiz-
ing 

∑
vballots

fsg ),(  

with respect to s with the above seat value con-
straint and then increasing f until 

Kfsg
vballots

=∑ ),( . 

The minimum for convex functions is s = (K –
 1)/V for each seat value in the sum, from which 

( )VfKgf
V

KVgK ,1,1
−=⎟

⎠
⎞

⎜
⎝
⎛ −

= , 

where ag(s, f) = g(as, af) has been used.  The 
solution, using  
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( )KKFKgK ,1,1 −−=  
is 

V
F

f KK ,1−= . 

This is the maximum load to elect K candidates 
for d’Hondt, unmodified Sainte-Laguë and un-
modified Huntington-Hill which all have a g(s, 
f) that is convex in s.  Modified Sainte-Laguë 
for 0.75 ≥ F0, 1 ≥ 0.5 and modified Huntington-
Hill for √½ ≥ F0, 1 ≥ 1/2 have non-convex g(s, f) 
in which a straight line connecting g(0, f) to 
g(f, f) is lower than g(s, f) at every point along 
the line.10 Therefore, for these rounding rules, 

∑
vballots

fsg ),(  

is minimized by V2 ballots with s = 0 and V1 
ballots with s = f = (K – 1)/V1, so that 
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where g(0, f) = f/F0, 1 (required by properties b 
and c), and g(x, x) = x (property d) have been 
used.  The solution is f = (K – 1)/V1 = F0, 1/V2.  
Solving for f in terms of V = V1 + V2 produces f 
= (K – 1+F0, 1)/V.   

The load to elect N – K +1 candidates other 
than the Kth candidate so that the Kth candidate 
cannot be elected satisfies 

( )( ) 1, +−=−∑ KNsfsg
snotvballot

notv . 

These candidates occur as topmost hopeful 
candidates only on the VT – V ballots.  The low-
est possible load is found when the seats values 
are as small as possible, which is s = 0.  The 
minimum load to elect N – K + 1 candidates is 
determined by 

( ) ( )
1,0

),0(1
F

fVVfgVVKN notvT
notvT

−
=−=+−  

The solution is 
( )

VV
FKN

f
T

notv −

+−
= 1,01

. 

––––––––––––––––– 
10 In classical thermodynamics this is called 
“Maxwell’s construction” for minimizing non-
convex free energy functions. 

The Kth candidate is electable if f < fnotv.  When 
rearranged, this is the proportionality condition 
given above. 

A consequence of the proportionality condi-
tion is that only d’Hondt rounding guarantees 
that a majority of voters will be awarded a ma-
jority of seats.  The d’Hondt proportionality 
condition guarantees that if the number of seats 
is 2m + 1 and there is a voting block that com-
mands more than half of the ballots, then at 
least m + 1 of the seats will be awarded to that 
voting block.  This is not guaranteed for other 
rounding rules.  This is true for party-list elec-
tions and preference-ballot elections.  The other 
rounding rules give greater weight to the first 
ranked candidate, so for majority rule to be 
violated the majority must rank their candidates 
mostly the same while the minority distributes 
the first ranked position more equally amongst 
their preferred candidates.  For party-list elec-
tions the number of parties is typically much 
less than the number of seats, so the extreme 
circumstances required for majority rule to be 
violated are much less likely to occur. 

6 Variations of the Procedure 

In this section, variations of the election pro-
cedure are presented that satisfy different vot-
ing system criteria. 

6.1 Election Procedure 2: A Single-
Round Procedure Agreeing with 
Party-List Elections 

The election procedure described in Section 
4 can fail to reproduce the result of a party-list 
election when each voter votes a party-list.  
This problem exists for STV elections too and 
is caused by incorrectly excluding candidates 
because of an artificially small electability load 
(an artificially large quota) caused by the pres-
ence of ballots that become inactive later in the 
count.  Election 2 is an example of this failure. 

Election 2 (2 seats, d’Hondt) 

90 A1 A2 … 
44 B1 B2 …  
43 C1 C2 …  
41 D1 D2 …  
36 E1 E2 …  
20 F1 F2 … 
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The d’Hondt divisor method applied to the 
equivalent party-list election elects A1 and A2.  
The preference-ballot procedure with perma-
nent exclusions excludes A2 and elects A1 and 
B1.  However, candidates A1 and A2 are 
elected if the preference-ballot election proce-
dure is altered so that all excluded candidates 
are recalled to hopeful status every time a can-
didate is elected and the premature stopping 
condition in Step 3b is removed.  The altered 
procedure proceeds as follows.  Stage 1: fA1 = 
1/90, fB1 = 1/44, fC1 = 1/43, fD1 = 1/41, fE1 = 
1/36, fF1 = 1/20, felect = 3/274 = 1/91.33.  The 
election loads of other candidates are not calcu-
lated as they are not the topmost hopeful candi-
dates on any ballots.  No candidate’s election 
load is less than the electability load, so candi-
date F1, with the largest election load, is ex-
cluded.  Also excluded are all candidates that 
are not the topmost hopeful candidate on any 
ballot, including A2.  The electability load in-
creases to felect = 3/254 = 1/84.67.  The election 
loads of the remaining hopeful candidates are 
unchanged.  Candidate A1 is elected.  The 90 
ballots ranking A1 first are assigned seat value 
1/90.  Stage 2: All excluded candidates are re-
called to hopeful status.  The loads are fA2 = 
2/90 =1/45, fB1 = 1/44, fC1 = 1/43, fD1 = 1/41, fE1 
= 1/36, fF1 = 1/20, felect = 2/184 = 1/92 (not 
1/91.33 as the 90 ballots with seat value 1/90 
don’t contribute).  The election loads of other 
candidates are not calculated as they are not the 
topmost hopeful candidates on any ballots.  No 
candidate’s election load is less than the elect-
ability load, so candidate F1, with the largest 
election load, is excluded.  Also excluded are 
all candidates that are not the topmost hopeful 
candidate on any ballot.  The electability load is 
increased to felect = 1/84.67.  No candidate’s 
election load is less than the electability load, 
so candidate E1 is excluded.  The procedure 
continues with, D1 and C1 successively ex-
cluded, at which point the electability load is 
increased to felect = 3/134 = 44.67, and candidate 
A2 is elected.   

 Temporarily rather than permanently ex-
cluding candidates can violate later-no-
harm/help.  Elections 3 and 4 are examples of 
this violation. 

Election 3 (2 seats, d’Hondt) 

 18 A 
 15 AB  

 24 C 
 23 D  
 20 BA 

Stage 1: fA = 1/33, fB = 1/20, fC = 1/24, fD = 
1/23, felect = 1/33.33.  Candidate B is excluded.  
Candidate A’s load decreases to fA = 1/53.  
Other loads are unchanged.  Candidate A is 
elected.  Each ballot electing candidate A is 
assigned a seat value of 1/53.  Stage 2: Candi-
date B is recalled to hopeful status.  Candidate 
B’s election load decreases to fB = (35/53 
+1)/35 = 1/21.08.  Candidate C has the lowest 
election load and is eventually elected.   

Had the 20 voters ranking candidate B be-
fore candidate A been aware that candidate A 
would be elected without their help, these vot-
ers could have left candidate A off their ballots 
to increase the chance of their favoured candi-
date, B, winning the second seat.  This is dem-
onstrated in Election 4. 

Election 4 (2 seats, d’Hondt) 

 18 A 
 15 AB 
 24 C 
 23 D  
 20 B 

Stage 1: fA = 1/33, fB = 1/20, fC = 1/24, fD = 
1/23, felect = 1/33.33.  Candidate B is excluded.  
The election load is increased to felect = 3/80 = 
1/26.67.  Other loads are unchanged.  Candi-
date A is elected.  Each ballot electing candi-
date A is assigned a seat value of 1/33.  Stage 
2: Candidate B is recalled to hopeful status.  
Candidate B’s election load decreases to fB = 
(15/33 +1)/35 = 1/24.06.  Candidate B has the 
lowest election load and is eventually elected. 

This is a violation of later-no-harm/help 
since candidate B’s election was achieved by 
removing candidates ranked below B on bal-
lots.  The example demonstrates that the proce-
dure encourages free riding, which is the same 
tactical voting procedure encouraged by all 
proportional multi-seat preference voting sys-
tems, including those that satisfy later-no-
harm/help.  It is advantageous for some voters 
to be free riders by not ranking very popular 
candidates, so that more of their vote will count 
for their favoured unpopular candidates.  But 
the temptation to be a free rider is tempered by 
the knowledge that if all voters acted in that 
way, the popular candidates would lose.  It is 
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unclear how the incentive to be a free rider un-
der the procedure violating later-no-harm/help 
compares to the incentive under the procedure 
that satisfies later-no-harm/help.   

6.2 Election Procedure 3: A Multi-
Round Procedure Satisfying Later-
No-Harm/ Help and Providing No 
Benefit to Woodall Free-Riding  

Woodall proposed a multi-round version of 
his election procedure in which the election is 
rerun after each exclusion, which has the effect 
of reassigning seat values on ballots to what 
they would be if the excluded candidate had 
never run.  The multi-round procedure prevents 
any benefit from what Markus Schulze [17] 
refers to as Woodall free riding, in which a 
voter ranks an unpopular candidate she is con-
fident will be excluded above a popular candi-
date she is confident will be elected so that 
more of her vote will be counted for lower 
ranked candidates.  It is easily generalized to 
Election Procedure 1, by recalling all elected 
candidates to hopeful status, setting all seat 
values to zero, and setting R = N at the end of 
Step 3b in Procedure 1 before proceeding to 
Step 2.  However, this procedure, like Election 
Procedure 1, will not in general reproduce the 
results of a party-list election when each voter 
votes a party list. 

6.3 Election Procedure 4:  
Proportionality without an  
Electability Test 

The simplest procedure that agrees with 
party-list elections when voters vote a party list 
as in Election Procedure 2, and provides no 
benefit to Woodall free riding as in Election 
Procedure 3, is presented below as Election 
Procedure 4.  It satisfies divisor-method propor-
tionality while not requiring that the electability 
load ever be calculated.  However, its violation 
of later-no-harm/help is more severe than that 
of Election Procedure 2.  It does not reduce to 
the Alternative Vote for the case of one seat.   

If there are M candidates, the procedure first 
calculates which candidates would be elected in 
an (M – 1)-seat election.  The M – 1 winners 
are entered in an election for M – 2 seats and 

the one non-elected candidate is excluded and 
is assigned a final election load.  The M – 2 
winners are entered in an election for M – 3 
seats and the one non-elected candidate is ex-
cluded and is assigned a final election load, etc.  
For an N-seat election, the count can stop when 
N hopeful candidates remain.  Alternatively the 
count can be continued until all candidates have 
been assigned a final election load.  In that 
case, candidates with the N lowest final election 
loads are the elected candidates in an N-seat 
election. 

The method does not require the calculation 
of the electability load since it is guaranteed 
that for an election for X – 1 seats for X candi-
dates, the candidate with the lowest load is 
electable.11 The proof that the method satisfies 
the divisor-method proportionality condition is 
as follows: The multi-round Election Procedure 
3 for N seats will elect the same N candidates as 
Election Procedure 4 if Procedure 3 is modified 
so that the candidate chosen for exclusion when 
no candidate is electable is not the hopeful can-
didate with the largest election load, but instead 
the hopeful candidate with the largest final 
election load as produced from Procedure 4.  
Agreement with the divisor method proportion-
ality condition follows since the condition does 
not depend on which candidate is excluded 
when no candidate is electable. 

Step 1.  At the start of the first round every 
candidate is hopeful and the seat value of every 
ballot is zero. 

Step 2.  Election load fc for each hopeful 
candidate c is determined from 

( )( ) 1, =−∑
cballots

c sfsg , 

where the sum is taken over all ballots where c 
is the topmost hopeful candidate.  If there is 
more than one hopeful candidate, go to Step 3a.  
If there is just one hopeful candidate, go to Step 
3b. 

Step 3a.  If there is more than one hopeful 
candidate, elect the candidate with the lowest 
––––––––––––––––– 
11 When all remaining candidates are tied with 
loads equal to the electability load none are 
electable and a tiebreaking procedure is needed 
to elect one of the candidates.  But it is still the 
case that one does not need to calculate the 
electability load in this situation. 
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load.  If candidate c has just been elected, the 
seat value for each ballot with seat value s that 
contributed to electing c is increased to g(s, fc).  
Proceed to Step 2 to begin the next stage. 

Step 3b.  If there is just one hopeful candi-
date, exclude it.  Its election load becomes its 
final election load.  If all candidates are ex-
cluded (and therefore all have been assigned 
final election loads), the candidates with the N 
lowest final election loads are the elected can-
didates in an N-seat election and the count is 
concluded.  Otherwise, if there is one or more 
elected candidate, set all elected candidates to 
hopeful.  Set all seat values to zero.  Proceed to 
Step 2 to begin the next round.   

For this procedure, changing the number of 
seats without changing ballots has no effect on 
final election loads.  Therefore, elected candi-
dates remain elected if the count is rerun for a 
larger number of seats with ballots unchanged.  
Also, if all voters are party loyalists so that they 
only rank candidates from their party, although 
in any order and not necessarily ranking every 
candidate from their party, the final election 
loads produced by counting each party’s ballots 
separately will not change if the ballots are all 
counted together.  Therefore, elected candidates 
remain elected if the count is rerun with ballots 
added for a new party and the number of seats 
increased until the total number of seats 
awarded to the previous parties is at least as 
large as it was previously.  Lastly, if all voters 
are party loyalists so that they only rank candi-
dates from their party, although in any order, 
and they rank all of the members of their party, 
then for d’Hondt rounding only,12 the final elec-
tion loads for a party that receives v votes will 
be 1/v, 2/v, 3/v, etc.  An increase (decrease) in a 
party's votes will decrease (increase) the party's 
final loads without changing the loads for other 
parties.  Therefore, for fixed number of seats, 
an increase in a party's votes cannot decrease 
the number of seats awarded to that party and a 
decrease to a party's votes cannot increase the 
number of seats awarded to that party.  How-
ever, monotonicity for the individual candidates 
is not guaranteed since the rank of candidates 
––––––––––––––––– 
12 Only for d’Hondt rounding is NF0, 1 = FN – 1, N 
for all N, which is required for any distribution 
of party ballots to produce the same final elec-
tion loads.  

within a party can change non-monotonically as 
party ballots are added or removed.  These 
properties are demonstrated by Elections 5 and 
6. 

Election 5 (2 seats, d’Hondt) 

 35 ACB 
 33 BAC 
 32 CBA  

The final election loads are fA = 1/100, fB = 
3/100 = 1/33.33, and fC = 2/100 = 1/50, so that 
candidate A is elected to a one-seat election and 
candidates A and C are elected to a two-seat 
election.  For d’Hondt rounding only, for any 
set of 100 ballots where each voter ranked all 
three candidates, the final loads are guaranteed 
to be 1/100, 2/100, and 3/100, although which 
loads candidates are assigned will depend on 
the ballots.   

The consequences of having an additional 
candidate, D, with 33 votes and with ballots 
otherwise unchanged, can be seen in Election 6.   

Election 6 (2 seats, d’Hondt) 

 35 ACB 
 33 BAC 
 32 CBA 
 33 D 

The final election loads for candidates A, B, 
and C are unchanged.  Candidate D’s final elec-
tion load is fD =1/33.  Candidate A still wins a 
one-seat election and candidates A and C still 
win a two-seat election.  For STV and all of the 
other election procedures described in this pa-
per, candidates A and C are elected to a two-
seat election when D voters don’t vote but can-
didates A and B are elected when the D voters 
vote.   

A demonstration of Election Procedure 4’s 
violation of later-no-harm/help is provided by 
Election 7. 

Election 7 (1 seat, d’Hondt) 

 35 A 
 33 BC 
 32 CA  

Procedure 4 elects candidate A.  However if 
the voters who ranked candidate A first also 
ranked C second, the procedure would have 
instead elected candidate C.  This shows that 
voters can be harmed by ranking an additional 
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candidate.  Election 8 shows that they can also 
be helped. 

Election 8 (1 seat, d’Hondt) 

 35 A 
 33 BC 
 32 CA  

Procedure 4 elects candidate B.  However if the 
voters who ranked candidate A first had ranked 
C second, the procedure would have elected 
candidate A. 

6.4: Election Procedure 5: Reproducing 
Party-List Elections, Providing No 
Benefit to Woodall Free-Riding, and 
Reducing to Alternative Vote for 
One Seat. 

The final election procedure presented in this 
paper combines: excluding candidates with the 
largest election load as in Procedures 1-3 to 
provide agreement with Alternative Vote in 
one-seat elections, the recalling of excluded 
candidates after an election as in Procedure 2 to 
provide agreement with party list elections 
when voters vote a party list, and the reassign-
ing of seat values after an exclusion as in Pro-
cedure 3 to provide no benefit from Woodall 
free-riding  Its violation of later-no-harm/help 
when the election is for more than one seat is 
no more severe than that of Election Procedure 
2.  However it does not have the properties of 
party separability and monotonicity with re-
spect to the number of seats, of Election Proce-
dure 4.  The procedure temporarily re-excludes 
all previously excluded hopeful candidates 
while seat values are being reassigned.   

Step 1.  At the start of the first stage every 
candidate is hopeful and the seat value of every 
ballot is zero.  The remaining number of seats 
to be filled, R, is set to N, the total number of 
seats to be filled.  Proceed to Step 4. 

Step 2.  Set all elected candidates to previ-
ously elected hopeful status.  Set all previously 
excluded hopeful candidates to temporarily 
excluded status.  Set all seat values to zero. 

Step 3.  Election load fc for each previously 
elected hopeful candidate c is determined from 

( )( ) 1, =−∑
cballots

c sfsg  

where the sum is taken over all ballots where c 
is the topmost hopeful candidate.  Re-elect the 
candidate with the lowest load.  If previously 
elected candidate c is re-elected, the seat value 
for each ballot with seat value s that contributed 
to re-electing c is increased to g(s, fc).  If not all 
previously elected candidates have been re-
elected, proceed to Step 3 for the next re-
election.  Otherwise recall all temporarily ex-
cluded candidates to previously excluded hope-
ful status. 

Step 4.  The election load fc for each hopeful 
candidate c is determined from 

( )( ) 1, =−∑
cballots

c sfsg , 

where the sum is taken over all ballots on 
which c is the topmost hopeful candidate and 
the electability load is determined from 

( )( ) 1, +=−∑ Rsfsg
active

elect , 

where the sum is taken over all active ballots.  
If at least one hopeful candidate is electable go 
to step 5a.  If no candidates are electable, go to 
step 5b.   

Step 5a.  Set the electable candidate with the 
lowest election load to elected.  (The count can 
be stopped if N candidates are elected).  The 
next stage begins.  R is reduced by 1.  Set all 
excluded candidates to previously excluded 
hopeful status.  Proceed to Step 2. 

Step 5b.  Exclude the candidate with the 
largest election load amongst those that are the 
topmost hopeful candidate on at least one bal-
lot.  Also exclude all hopeful candidates that 
that do not appear as the topmost hopeful can-
didate on any ballot.  If all of the candidates 
excluded in this step have been previously ex-
cluded proceed to Step 4.  Otherwise, proceed 
to Step 2.  Election 9 demonstrates the proce-
dure. 

Election 9, (2 seats, d’Hondt) 

 13 AB 
 8 AC 
 4 DAC 

Stage 1: fA = 1/21, fD = 1/4, felect = 
3/25=1/8.33.  Candidates B and C are not the 
topmost hopeful candidate on any ballot so 
their loads are not calculated.  The lowest   
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election load, fA, is lower than the electability 
load so candidate A is elected.  Stage 2: Each of 
the twenty one ballots that contributed to can-
didate A’s election are assigned a seat value of 
1/21.  FB = (13/21+1)/13 = 1/8.0, fC = (8/21 
+1)/8 = 1/5.8, fD = 1/4, felect = 1/8.33.  No candi-
date’s election load is less than the electability 
load.  Candidate D has the largest election load, 
is excluded.  Reweighing: With D excluded, 
candidate A’s load is decreased to fD =1/25.  
Candidate A is re-elected.  Each of the twenty 
five ballots that contributed to candidate A’s re-
election is assigned a seat value of 1/25.  The 
loads are now fB = (13/25 + 1)/13 =1/8.55, fC = 
(12/25 + 1)/12 = 1/8.11, felect = 1/8.33.  Candi-
date B is elected.  In the single round proce-
dure, candidate C is elected even though 13 
voters wanted A and B and only 12 wanted A 
and C. 

7 Conclusion 

In this paper, a generalization of Woodall’s 
QPQ procedure has been presented for assign-
ing seats from preference ballots in multi-
candidate elections, using divisor methods 
(d’Hondt, Sainte-Laguë.  Huntington-Hill, etc.) 
commonly used in party-list proportional repre-
sentation elections.  The procedure satisfies a 
proportionality condition that, in general, is 
different from Droop proportionality.  Versions 
of the procedure can satisfy later-no-harm/help 
criteria or reproduce the results of party-list 
elections when each voter votes a party list, but 
not both at the same time.  I gratefully ac-
knowledge Douglas Woodall for his very help-
ful comments and suggestions.  All errors are 
my own.   
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