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1 Introduction

STV methods have historically used one of two quo-
tas: the Hare quota v/s (votes divided by seats) or
the Droop quota v/(s + 1) (votes divided by seats
plus one) [1, 2].

The Hare quota v/s is the largest quota such that
s candidates can be elected. Methods employing the
Hare quota typically deal in whole votes, and use the
integer portion of the calculation: |v/s].

With the Hare quota, it is possible for a major-
ity bloc of voters to elect only a minority of seats,
in particular when the number of seats is odd. The
Droop quota, the smallest quota such that no more
candidates can be elected than there are seats to
fill, addresses this problem. Furthermore, the Hare
quota is vulnerable to strategic voting and vote man-
agement, which the Droop quota makes much less
likely to succeed. More generally, the Droop quota
figures in the Droop proportionality criterion; thus
Woodall [3]:

The most important single property of
STV is what I call the Droop proportion-
ality criterion or DPC. Recall that if v
votes are cast in an election to fill s seats,
then the quantity v/(s + 1) is called the
Droop quota.

DPC. If, for some whole numbers k and
m satisfying 0 < k£ < m, more than k
Droop quotas of voters put the same m
candidates (not necessarily in the same
order) as the top m candidates in their
preference listings, then at least k of
those m candidates should be elected.
(In the event of a tie, this should be in-
terpreted as saying that every outcome
that is chosen with non-zero probabil-
ity should include at least k£ of these m
candidates.)

Nicolaus Tideman (after Michael Dummett) calls
this “(k+1)-proportionality for solid coalitions”, or
(k+1)-PSC [2, p269].

The Droop quota, like the Hare quota, is often
rounded to an integer. From O’Neill’s description
of the proposed BC STV rules [4]:

The “Droop quota” will be the formula
for calculating the number of votes re-
quired by a candidate for election in a
district. The quota formula is:

total number of valid
ballots cast in the district

number of members
to be elected

Fractions are ignored.

More compactly: |v/(s+ 1) +1].

Henry Droop himself defined his quota as
mV/(n + 1) + i, where V' voters have m votes
each, the number of seats is n, and ¢ is the number
necessary to reach the smallest integer greater than
mV/(n + 1) [5]. When m is 1, this gives the same
result as | v/(s+1)+1], though differently expressed.

If m is 10¥, this is the equivalent of working to k
decimal places with one vote each. Droop says that
¢ rounds up to the next integer, not to the next mul-
tiple of m, making it quite clear that Droop himself
would think that any such increment should be in
the last decimal place used, not a whole integer. (It
is unlikely, however, that Droop contemplated using
m > 1 for STV elections.)

It seems to have been nearly a century before the
purpose of the +¢ was queried, when in the 1970s
Frank Britton pointed out to Robert Newland that it
was never needed except in the case of a tie for all
remaining places and, if that happened, it did not
help to resolve the tie. This led to the 1976 version
of the ERS rules to replace the 1972 version.

In fact, Droop’s quota does not satisfy his wish
of being the smallest possible that cannot elect too
many, unless it is insisted that the same quota has to
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apply to all, for once the incremented quota has been
applied to the first elected, a smaller quota would be
safe for all the rest. It might be argued that it would
be unfair to make the first elected keep a larger num-
ber, but it is no more so than filling the last places
on less than a quota, as is traditional practice.

However, there is an extra point of importance
when hand counting, well explained by Robert New-
land (in a letter to Bernard Black, quoted with
permission in ERS Technical Committee paper TC
88/2). He wrote “in earlier days I have had Droop
quotas of 2.01, 3.01, 4.01, etc. If the Droop quota
was, say, 4.01, and one or more candidates had 4
votes, then one was obliged to carry out the farce
of transferring votes to those candidates, and then
transferring away all except 0.01 of the added votes,
even though those candidates already demonstra-
bly had sufficient votes that they must be elected.
Now, since 1976, the Britton quota has avoided this
nonsense”’.

The new ERS rules avoided “this nonsense” only
for quotas that could be expressed exactly in two
decimal places, but, as we shall see, the principle
can be extended if we can represent quotas exactly.

2 Terminology

Some sources reserve the term “Droop quota” for
the rounded-up |v/(s + 1) + 1]. Tideman calls
v/(s + 1) the “NB quota”, after Newland and Brit-
ton [2, p271], while Newland referred to it as
the “Britton quota” [quoted above]. Wikipedia (as
of this writing) calls v/(s + 1) the “Hagenbach-
Bischoff quota” [6], but Electoral System Design
glosses “Hagenbach-Bischoff Quota” as “Another
term for the Droop Quota” [7].

A cursory survey of online literature, includ-
ing Voting matters, suggests that the name “Droop
quota” is commonly used for any quota between
|v/(s+1)+1] and v/(s+1). The difference can be
as much as a full vote, usually insignificant in large
elections, but often significant in small ones.

3 Problems

The exact (unrounded) Droop quota v/(s+1) has two
potential problems.

Too many winners.
If the quota is exactly v/(s + 1), then s + 1
candidates can receive exactly a quota. This
problem can be addressed in several ways.

* Adjust the quota upward, typically by the
nominal limit of computational precision,

but in some rules as much as to the next
higher integer.

» Use the exact quota, but elect on exceed-
ing, rather than simply reaching, the quota
[8].

* Use the exact quota. If there are s + 1
winners, they must be tied; break the tie.

» Use the exact quota, as with the last case,
but deferring the election of candidates
with exactly a quota until s or fewer
candidates remain. Break ties as required.

Limitations of numerical representation.
Typical implementations use binary or dec-
imal arithmetic, in which a quota such as
100/(2+1) cannot be exactly represented.
Again, there are several ways to address the
problem.

* Adjust the quota upward to a value that
can be represented, the limiting case be-
ing the integer quota [v/(s + 1) + 1].

* Use the exact quota if it can be exactly
represented; otherwise adjust the quota
upward to the smallest representable
value that is greater than the exact quota.

e Use rational arithmetic, so that all val-
ues can be represented exactly. This ap-
proach is likely to be computationally ex-
pensive, and has not to our knowledge
been implemented.

* Use quasi-exact fixed-point or floating-
point arithmetic with guard digits (see
appendix below).

ERS97, which uses two decimal digits of pre-
cision, represents 100/(3+1) exactly (as 25.00) but
rounds 100/(2+1) up (to 33.34) [9]. Integer-based
methods use |v/(s+ 1) + 1], so that these two quo-
tas become 26 and 34. OpenSTV’s implementation
of Meek’s method uses 25.000001 and 33.333334
by default (six decimal digits of precision, always
rounding up) [10]. The “Algorithm 123” imple-
mentation of Meek’s method treats the underlying
computational precision as exact, ignoring trunca-
tion and rounding errors, and breaks ties when too
many candidates reach the quota [11].

DPC failure. STV rules such as Irish or BC STV
that use a quota of |v/(s+ 1)+ 1] do not satisfy the
Droop proportionality criterion (DPC), as demon-
strated by this example from Robert Newland [12]
(two parties, four candidates per party, seven seats
to be filled).

Voting matters, Issue 24
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101
100

101
100

101 98
100 99

Party A:
Party B:

(Total 401)
(Total 399)

If the quota is 100 (v/(s + 1)), Party A takes
four seats, and Party B three. If the quota is 101
(|Jv/(s + 1) 4+ 1)) or, more generally, greater than
100%, Party A takes three seats, and Party B four,
a DPC violation. (The Hare quota shares this dif-
ficulty, leading to its problems with vote manage-
ment.)

Premature election. Requiring that candidates
reach (rather than exceed) the exact quota v/(s + 1)
raises an additional difficulty, as in this example due
to Tideman; two to be elected:

—_ W AN
0w
Qg

The quota is 4; A and B are elected. While this
case does not violate Woodall’s Droop proportion-
ality criterion (since no group has more than one
Droop quota), the solid coalition for C & D ought
to carry the same weight as those for A and B, and
we should discover the A-B—C tie. This problem
does not arise if the rule requires that candidates ex-
ceed the exact quota, or if it defers the election of
candidates with exactly a quota until all candidates
with fewer votes have been excluded.

Unintended tiebreaking (1). Methods that round
the quota up have a problem with this example (two
to be elected):

4 AB
2 C

The exact quota is 2. If we round that quota up to
2.01, A is elected, we transfer the surplus of 1.99 to
B, so that C beats B by a vote of 2 to 1.99. In our
opinion, it is clear that B and C should be regarded
as tied.

Unintended tiebreaking (2). In the previous ex-
ample, rounding the quota up may be seen as gratu-
itous. In this example, rounding up serves another
purpose (five to be elected):

6 AE
4 BE
7 CDF
3 DF
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A, B, C & D are elected, and E & F should tie (we
have two coalitions of 10 voters each). However, the
exact quota of 20/6 cannot be exactly represented in
either base 2 or base 10. If the quota is rounded up,
E is elected because F suffers from more rounding
error than E. This problem can be resolved by using
a method that employs an exact quota in all cases.

Inexact representation can also lead to the appear-
ance of a tie when there is in fact none. Suppose
that, as a consequence of surplus transfers, Candi-
date A has 1 + 99/100 votes, and Candidate B has
L+ 4+ ;i + 3 Candidate B should beat Candidate
A, but if 3 is represented as 0.33, they will appear

3
to be tied at 1.99.

4 Conclusion

Should we prefer one approach to another?

The [v/(s+ 1) + 1] integer version of the Droop
quota is defensible in the context of a hand-counting
rule that deals with whole-vote transfers only, so that
only whole numbers are involved in the count. Such
rules have other problems, though, that are beyond
the scope of this paper.

Methods using fractional surplus transfers should
use an exact quota and require that candidates ex-
ceed the quota, or, alternatively, require that candi-
dates reach the quota, defer the election of candi-
dates with exactly a quota, breaking ties as required.

If exact computation is not practical, errors result-
ing from the deviation can be minimized by round-
ing up as little as possible—for example, rounding
up to the nominal precision of the specified rule.

The choice of an STV method generally has more
significant implications than do the details of quota
calculation, and anyone who has examined the bal-
lots in a large election will be painfully aware that
clerical errors or errors due to voter carelessness
(or mischief) will generally far outweigh calculation
differences in the millionths of votes. Nonetheless,
it may be seen as a reasonable desideratum that our
calculations not introduce unnecessary errors into
our results —perhaps especially in the simple exam-
ples above, and that the Droop Proportionality Cri-
terion be strictly observed, especially when such a
result may be obtained with little additional effort.

S Appendix: Quasi-exact arithmetic
with guard digits

Here we describe a method of performing quasi-
exact STV calculations with fixed-point or floating-

5
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point arithmetic. The results are exact if the speci-
fied conditions are met.

Perform arithmetic to the precision p + g digits,
where p is the nominal computational precision and
g is additional guard digits; when making compar-
isons, ignore differences less than half the nomi-
nal precision 1077, and display results rounded to p
decimal places. For example, with a nominal preci-
sion p of 6 digits, perform computations to 10 digits
(g = 4), and define (a ~ b) as (Ja—b| < 0.0000005),
where = is read “essentially equal to” (Knuth’s ter-
minology [13]). For this method to succeed, the
nominal precision p must be adequate to represent
any “real” differences, and there must be sufficient
guard digits ¢ to absorb any accumulated truncation
errors. This approach is available as an option in a
forthcoming version of OpenSTV as well as in Lun-
dell’s Perl-based STV counter [14].

It has been observed that the relation ~ as defined
here is not transitive; that is, (a =~ b) and (b ~ ¢) do
not imply (¢ ~ c¢). While this is true in general,
the problem can be avoided by making p and g suf-
ficiently large. Moreover, it may be considered that
the loss of transitivity is more than compensated for
by the fact that we avoid the embarrassing problem
that (for example) & + % + % # 1.

An alternative method is to define p and ¢ as
above, and to test for equality after rounding to p
decimal places. This method preserves the transi-
tivity of the equality relation at the expense of (po-
tentially) treating arbitrarily close values as unequal,
as long as they are on opposite sides of a rounding
boundary. Again, this problem is avoided to the ex-
tent that p and g are sufficiently large. Ensuring that
p and g are sufficiently large is not trivial. As Wich-
mann has observed [15], it is possible to create elec-
tion examples in which very small surplus transfers
can affect the outcome; in his example, a succession
of two transfers results in a significant difference of
1/16 000 000 of a vote, and it would be straight-
forward to extend his example to require even more
precision.
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